12 research outputs found

    Role of FGFR2b expression and signaling in keratinocyte differentiation. Sequential involvement of PKCδ and PKCα

    Get PDF
    The tumor suppressor epithelial isoform of the fibroblast growth factor receptor 2 (FGFR2b) induces human keratinocyte early differentiation. Moreover, protein kinases C (PKCs) are known to regulate the differentiation program in several cellular contexts, including keratinocytes. Therefore, in this paper we propose to clarify if FGFR2b could play a role also in the late steps of keratinocyte differentiation and to assess if this receptor-induced process would sequentially involve PKCδ and PKCα isoforms. Immunofluorescence, biochemical, and molecular approaches, performed on 2D cultures or 3D organotypic rafts of human keratinocytes overexpressing FGFR2b by stable transduction, showed that receptor signaling induced the precocious onset and an accelerated progression of keratinocyte differentiation, indicating that FGFR2b is a crucial regulator of the entire program of keratinocyte differentiation. In addition, the use of specific inhibitors and gene silencing approaches through specific siRNA demonstrated that PKCδ controls the onset of FGFR2b-triggered differentiation, while PKCα plays a role restricted to the terminal stages of the process. Molecular analysis revealed that the two PKC isoforms sequentially act via induction of KLF4 and DLX3, two transcription factors linked by negative loops to p63, suggesting that p63 would represent the hub molecule at the crossroad of an intricate signaling network downstream FGFR2b, involving multiple PKC-induced transcription factors

    Simulated microgravity triggers epithelial mesenchymal transition in human keratinocytes

    Get PDF
    The microgravitational environment is known to affect the cellular behaviour inducing modulation of gene expression and enzymatic activities, epigenetic modifications and alterations of the structural organization. Simulated microgravity, obtained in the laboratory setting through the use of a Random Positioning Machine (RPM), represents a well recognized and useful tool for the experimental studies of the cellular adaptations and molecular changes in response to weightlessness. Short exposure of cultured human keratinocytes to the RPM microgravity influences the cellular circadian clock oscillation. Therefore, here we searched for changes on the regenerative ability and response to tissue damage of human epidermal cells through the analysis of the effects of the simulated microgravity on the re-epithelialization phase of the repair and wound healing process. Combining morphological, biochemical and molecular approaches, we found that the simulated microgravity exposure of human keratinocytes promotes a migratory behavior and triggers the epithelial-mesenchymal transition (EMT) through expression of the typical EMT transcription factors and markers, such as Snail1, Snail2 and ZEB2, metalloproteases, mesenchymal adhesion molecules and cytoskeletal components

    HDAC Inhibition Improves the Sarcoendoplasmic Reticulum Ca2+-ATPase Activity in Cardiac Myocytes

    Get PDF
    SERCA2a is the Ca2+ ATPase playing the major contribution in cardiomyocyte (CM) calcium removal. Its activity can be regulated by both modulatory proteins and several post-translational modifications. The aim of the present work was to investigate whether the function of SERCA2 can be modulated by treating CMs with the histone deacetylase (HDAC) inhibitor suberanilohydroxamic acid (SAHA). The incubation with SAHA (2.5 \ub5M, 90 min) of CMs isolated from rat adult hearts resulted in an increase of SERCA2 acetylation level and improved ATPase activity. This was associated with a significant improvement of calcium transient recovery time and cell contractility. Previous reports have identified K464 as an acetylation site in human SERCA2. Mutants were generated where K464 was substituted with glutamine (Q) or arginine (R), mimicking constitutive acetylation or deacetylation, respectively. The K464Q mutation ameliorated ATPase activity and calcium transient recovery time, thus indicating that constitutive K464 acetylation has a positive impact on human SERCA2a (hSERCA2a) function. In conclusion, SAHA induced deacetylation inhibition had a positive impact on CM calcium handling, that, at least in part, was due to improved SERCA2 activity. This observation can provide the basis for the development of novel pharmacological approaches to ameliorate SERCA2 efficiency

    Role of FGFR2b in the crosstalk between autophagy and differentiation: involvement of JNK signaling

    No full text
    The FGFR2b is a receptor tyrosine kinase expressed exclusively in epithelial cells. We previously demonstrated that FGFR2b induces autophagy and that this process is required for the triggering of FGFR2b-mediated keratinocytes early differentiation. However, the molecular mechanisms regulating this interplay remain to be elucidated. Since we have also recently shown that JNK1 signaling is involved in FGFR2b-induced autophagy and a possible role of JNK pathway in epidermal differentiation has been suggested but it is still debated, here we investigated the crosstalk between FGFR2b-mediated autophagy and differentiation focusing on the downstream JNK signaling. Biochemical, molecular and immunofluorescence approaches in 2D keratinocyte cultures and 3D organotypic skin equivalents confirmed that FGFR2b overexpression increased both autophagy and early differentiation. The use of FGFR2b substrate inhibitors and the silencing of JNK1 highlighted that this signaling is required not only for autophagy but also for the triggering of early differentiation. In contrast, ERK1/2 pathway did not appear to be involved in the two processes and AKT signaling, whose activation contributes to the FGFR2b-mediated onset of keratinocyte differentiation, was not required for the triggering of autophagy. Overall, our results point to JNK1 as a signaling hub that regulates the interplay between FGFR2b-induced autophagy and differentiation

    Expression of the FGFR2 mesenchymal splicing variant in epithelial cells drives epithelial-mesenchymal transition

    No full text
    The FGFRs are receptor tyrosine kinases expressed by tissue-specific alternative splicing in epithelial IIIb or mesenchymal IIIc isoforms. Deregulation of FGF/FGFR signaling unbalances the epithelial-stromal homeostasis and may lead to cancer development. In the epithelial-context, while FGFR2b/KGFR acts as tumor suppressor, FGFR2c appears to play an oncogenic role. Based on our recent observation that the switching of FGFR2b versus FGFR2c induces EMT, here we investigated the biological outcome of the ectopic expression of FGFR2c in normal human keratinocytes. Morphological analysis showed that, differently from FGFR2b overexpression, the forced expression and activation of FGFR2c drive the epithelial cells to acquire a mesenchymal-like shape and actin reorganization. Moreover, the appearance of invasiveness and anchorage-independent growth ability in FGFR2c transfected keratinocytes was consistent with the potential tumorigenic role proposed for this receptor variant. Biochemical and molecular approaches revealed that the observed phenotypic changes were accompanied by modulation of EMT biomarkers and indicated the involvement of EMT transcription factors and miRs. Finally, the analysis of the expression pattern of discriminating markers strongly suggested that activation of FGFR2c triggers a process corresponding to the initiation of the pathological type III EMT, but not to the more physiological type II EMT occurring during FGFR2b-mediated wound healing

    Clinical evidence of interaction between nutraceutical supplementation and platinum-based chemotherapy

    No full text
    Platinum agents, which include cisplatin, oxaliplatin and carboplatin, are chemotherapeutic drugs which represent the first-line treatment for different types of solid tumors, such as ovarian, head and neck, testicular, and bladder cancers. Their beneficial effect is limited by the onset of drug resistance and by severe toxicities, involving mainly ototoxicity, neurotoxicity and nephrotoxicity. Recent studies highlighted the supplementation of herbal products, vitamins and minerals with antioxidant properties to prevent and protect from side effects. In particular, the introduction of nutraceuticals associated with chemotherapy has improved the patients' quality of life. However, if from one side, complementary and alternative medicine ameliorates chemotherapeutics-induced toxicities, from the other side it is important to take into consideration the possible interference with drug metabolism. This review aims to consider the current literature focusing on clinical trials that report association between nutraceutical supplementation and platinum-based chemotherapy to prevent toxicities, highlighting both beneficial and side effects

    Hematopoietic and non-hematopoietic p66Shc differentially regulates stem cell traffic and vascular response to ischemia in diabetes

    No full text
    Peripheral artery disease (PAD) is a severe complication of diabetes, characterized by defective traffic of hematopoietic stem/progenitor cells (HSPCs). We examined the hematopoietic versus non-hematopoietic role of p66Shc in regulating HSPC traffic and blood flow recovery after ischemia in diabetic mice
    corecore